

BSEU JOURNAL OF ENGINEERING RESEARCH AND TECHNOLOGY, VOLUME 2, ISSUE 1, JUNE 2021

1*Corresponding author mail: cihan.karakuzu@bilecik.edu.tr (https://orcid.org/0000-0003-0569-098X)
Computer Engineering, Bilecik Seyh Edebali University, Bilecik-Turkey
2 Second author mail: r.babuska@tudelft.nl (https://orcid.org/0000-0001-9578-8598)
Department of Cognitive Robotics, Delft University of Technology, Delft-Netherlands

On-line Path Planning for Swarm of Mobile Robots Based on

Particle Swarm Optimization

C. Karakuzu
1*

 and R. Babuška
2

Abstract— Generally, most of the related studies in the literature report only simulation results on path planning

problems. In this paper, a PSO-based path planning method is proposed and applied in real-time experiments to determine an

appropriate on-line path for a swarm of mobile robots in a 2D environment. This paper presents a novel on-line path

planning strategy for a swarm of mobile robots. The method is based on particle swarm optimization (PSO). Each robot is

considered an agent, and an independent particle swarm is used to find an appropriate path in real time. At each sampling

instant, the PSO algorithm optimizes the target position to be for the robot at the next time step. The PSO cost function

accounts for the distance of the robot from the goal, the positions of the other robots, and obstacles in the environment. The

proposed on-line path planning strategy has been implemented and evaluated on an experimental setup. Experimental results

for three different path planning scenarios under varying conditions are included in this paper. The most significant

contributions of this study are the results of the proposed method in real-time experiments.

Index Terms— path planning, mobile robot, particle swarm optimization, robot control, local search.

I INTRODUCTION

Path planning is the task of determining an optimal path

from an initial position to a target position while avoiding

collisions between robots and obstacles in the environment.

This task may be achieved either through off-line path

planning or through on-line, real-time path planning. The

advantage of real-time path planning is that the path can be

replanned if the situation changes, such as in an environment

with dynamic obstacles. In this paper, we propose a real-time

path planning method based on particle swarm optimization.

Computationally, path planning is an NP-complete problem.

Therefore, the computational time required to solve a problem

increases dramatically when the scale of the problem increases

[1]. This is the main reason swarm intelligence techniques have

recently received considerable attention in mobile robot path

planning. These techniques are inspired by the social behavior

of animals such as birds or bees. Typical examples of swarm

intelligence methods are particle swarm optimization (PSO),

inspired by flocking bird swarm behavior, and an artificial bee

colony (ABC), inspired by the foraging behavior of honey

bees. The use of swarm intelligence in path planning can be

found in the literature such as [2], [3], and [4]. In this paper, a

PSO algorithm is used as it is computationally more effective

than other swarm intelligence algorithms, and it finds a good

solution quickly. Below, several remarkable studies are

summarized that coincide with the scope of this study.

Doctor et al.[5] studied single-target and multiple-target

search using PSO in a simulation environment. They

concluded that PSO is quite reliable in target-searching

applications. Lei et al. [6] and Chen and Li [7] used PSO and

its stochastic variant S-PSO to solve a path planning problem

for mobile robots in a simulated environment with obstacles.

The simulation results of Chen and Li (2006) demonstrate

that the proposed S-PSO algorithm is effective thanks to its

exploration ability and low computational costs with small

swarm size. Vahdat et al. [8] compared differential evolution

(DE) and PSO methods with a standard Monte Carlo

localization (MCL) algorithm for a mobile robot localization

problem. Rigatos [9] used distributed gradient and particle

swarm optimization for multi-robot motion planning. The

performance of both approaches has been evaluated through

simulation tests in a 2D environment with polyhedral

obstacles. Even though both performance methods were

satisfactory, the distributed gradient had advantages over

particle swarm optimization. A drawback of that method,

however, is that it needs complex gradient computations. In

[10], two fuzzy controllers, called distance and angle

controllers, were designed to control a mobile robot in a

simulated 2D environment without obstacles. The PSO was

used to determine optimal parameters of the fuzzy

controller’s membership functions so that the robot could

effectively move to the desired position.

All the above papers report only simulation results. In this

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

8

paper, a PSO- based path planning method is proposed and

applied in real-world experiments to determine an appropriate

on-line path for mobile robots moving as a swarm in a 2D

environment with obstacles. This method requires

information only about the robot’s attitude (position and

orientation) and registers on-line path planning in real time.

Each mobile robot uses its own independent particle swarm

optimizer to search for the most appropriate position for the

next sampling time in a local search area formed around the

current position. In this way, a path for the robot is

determined step by step. Experimental results are given for

three different path planning scenarios. The main contribution

of our work is the application of this PSO-based method to an

experimental setup in real-time.

The rest of the paper is organized as follows: Section II

introduces the algorithm for path planning with obstacle

avoidance; Section III presents the experimental setup used in

this study; Section IV summarizes the experimental results

obtained with the proposed path planning strategy. In the last

section, conclusions are drawn.

II ON-LINE PATH PLANNING BASED ON PSO

The aim is to determine an appropriate path for each robot

in the swarm from some initial position to a specified goal

position without colliding with other robots and obstacles.

A PSO algorithm
The stochastic PSO algorithm called S-PSO [7] is used in this

study. The algorithm is defined by the following equations:

𝑣 (𝑛 + 1) = 𝜓(𝑛)[𝑣 (𝑛) + 𝑐 𝑟 (𝑝

(𝑛) − 𝑝 (𝑛)) +

𝑐 𝑟 (𝑝
 (𝑛) − 𝑝 (𝑛)) + 𝜆𝑅(𝑛)] (1)

𝑝 (𝑛 + 1) = 𝛼𝑝 (𝑛) + 𝑣 (𝑛 + 1) +

(𝑐 𝑟 𝑝

(𝑛) +

𝑐 𝑟 𝑝
 (𝑛)) (2)

The symbols have the following meaning: pi is the position

and i the velocity of the ith particle; c1, c2 are learning

constants, and α is the learning rate. Furthermore, r1 and r2

are uniformly distributed random numbers, λ is a small

constant, and R is a vector including zero-mean, unit-variance

normally distributed random numbers. The superscripts pb

and gb refer to the personal best and global best particle,

respectively. The personal best particle (p
pb

) corresponds to

the particle’s own best-known position found so far. The

global best particle (p
gb

) corresponds to the best one found so

far among all the particles. After the last iteration, denoted by

Gmax, the global best particle is assigned as the final

solution. The inertia term 𝜓(n) decays to zero as the number

of iterations n grows [7]:

𝜓(𝑛) =

 (3)

Bratton and Kennedy [11] showed that this inertia term
improves the PSO algorithm’s performance.

The above algorithm was implemented in Matlab with the

following parameter values determined through a series of

simulation experiments: c1 = c2 = 2.5, α = 0.5, λ=10
−2

.

Particle positions are restricted within the physical limits of

the area where the robots move, and their velocities are

restricted to [−r/5 r/5] with the local search area radius r

explained in the following section.

B Path planning strategy
The PSO algorithm explained in the previous section was

applied to determine in real time the most appropriate

position of a mobile robot in a 2D environment. Each mobile

robot uses its own PSO swarm with N particles associated

with the candidate positions of the robot. Figure 1 illustrates

the strategy used to determine the path of a robot. The target

position for the next sampling instant is searched in the

neighborhood with radius r of the robot’s current position pa.

The area enclosed by the dashed line circle is called the local

search area (LSA).

Figure 1 Local search area used for the path planning

The radius r of LSA is defined by Eq (4), where ∆t is the
sampling period of the system and umax is the maximum
velocity control signal that can be applied to the robot (0.25
m/s).

r = umax ∆t (4)

In Fig. 1, p
t
 denotes the target position found by the PSO

after a predefined maximum number of generations Gmax.

This position is set as the target for the robot for the next step.

The distance between the actual position p
a
 and the target

position p
t
 is denoted by d, and ∆θ is the change of the

robot’s orientation during ∆t. At each sampling instant, the

particle positions are initialized randomly with a uniform

distribution within LSA, and their velocities are restricted to
[−r/5 r/5].

To determine the local best and the global best particle, the

cost value Ji of each particle i is calculated by Eq (5), where

γ1, γ2, γ3 ∈ R
+
 are weight factors.

 𝐽 = 𝛾 ‖𝑝 − 𝑝
 ‖ + 𝛾 𝐹

+ 𝛾 𝐹

 (5)

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

9

The first term is the Euclidean distance between the

current position of the ith particle and the eventual goal

position of the robot. The second term takes into account the

mutual distances between the robots by using potential

functions [12] given in Eqs (6) and (7). The last term is

defined in Eqs (8) and (9) to avoid obstacles [7].

𝐹

=∑ ∑ 𝑓

 (6)

𝑓

=

‖𝑝

− 𝑝

 ‖ +

𝑒

‖

 ‖

 (7)

𝐹
 =∑ 𝑓

 (8)

𝑓
 = *

‖ ‖
−

if ‖𝑝 − 𝑂𝑏𝑠 ‖ ≤ 𝛿

0 if ‖𝑝 − 𝑂𝑏𝑠 ‖ > 𝛿

 (9)

In the above equations, nr and h respectively represent the

number of mobile robots and the number of obstacles; a, b

and c are constant parameters of the potential functions, and

D is the safe distance defined to avoid collision between two

mobile robots. Obs and δ
obst

 respectively represent obstacle

position and the safety margin defined to ensure that the robot

passes without hitting the obstacle. The last term in Eq.(5) is

active if the distance between the robot and an obstacle is less

than a safety margin δ
obst

. Each robot found within the safety

margin is considered an obstacle and therefore it may be a

dynamic obstacle for the other robots. This term is important

in that it emphasizes that the method also works for dynamic

obstacles.

Now, we have the cost values for each particle in the

swarm. The particle with the minimum cost is assigned as the

global best particle p
gb,

 and each particle is assigned as its

own personal best for the first generation. Then for the next

generation, the swarm is updated according to the personal

best and global best particles. Finally, the cost values of the

new particles are calculated again using equation (5). If a

particle has a lower cost than the global best particle of the

previous generation, this particle is assigned as the global

best particle. The personal best particle is the particle’s own

best-known position found so far among the current and

previous generations for each particle. The swarm is updated

again according to the new personal best and global best

particles. For each generation, the personal best value of each

particle and the global best found so far are updated using

current and prior cost values. The algorithm is conducted in

the same way until the generation number n reaches the

maximum generation number (Gmax). At the end of the

Gmax generation, the global best particle of each PSO swarm

is assigned as the new target position for the related robot.

Then a motion control unit calculates the necessary control

signal and sends it to the robot to reach the target position.

Fig. 2 shows the positions of particles separately

according to the generation numbers for the mobile robot in a

sampling time interval. As seen in the figure, initial particles

are positioned randomly around the robot's actual position of

the first generation. As the generation number increases,

particles begin to change their positions in a particular

direction. The last generation particles have their positions

near the point marked as the global best.

C Robot motion control
After the target positions of each robot for the next step are
determined by the relevant PSO swarm, as explained in the

previous subsection, the main problem is to produce a

suitable control signal to implement this strategy in real time.

The control structure given in Fig. 3 has been designed for

this purpose. In this structure, the classical PD control

method is preferred thanks to its simplicity.

Figure 2 Positions of particles produced for a mobile robot in a

sampling time interval

Figure 3 Motion control structure for a mobile robot.

The integral term is not used because steady-state errors can

be tolerated by the nature of the method. The structure

includes two PD controllers that are used separately for each

robot in a robot swarm. While PD1 produces a forward or

backward movement control signal (u), at the same time, PD2

produces an angular velocity (ω) to rotate the robot to the

needed direction. Then these signals are sent to ζ() block.

This block calculates the velocities in m/s to move the robots

toward the target position (p
t
). The calculation realized by the

motion control unit is defined as follows: the robot’s target

position (pt) is determined by its own PSO as:

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

10

 p
t
 = [x

t
 y

t
] (10)

where x
t

and y
t
 denote the apsis and ordinate of the target

position. The target orientation θ
t
 of a robot is calculated by:

𝜃 = 𝑡𝑎𝑛 (

) (11)

where x
a
 and y

a
 denote the coordinates of the robot’s actual

position. The motion control from an actual position to a

target position can be divided into two sub-tasks: position and

orientation control. The first one produces the main control

signal (u) to move a robot to a target position (x
t
,y

t
). PD1

accomplishes this task according to the positional error. As

the result of an analysis given in [13], the positional error (ep)

is formulated as in (12).

𝑒 = √(𝑥
 − 𝑥) + (𝑦 − 𝑦) 𝑐𝑜𝑠(𝜃 − 𝜃) (12)

Based on the positional error, PD1 produces the primary

control signal (u) according to (13). u is the robot's velocity

in the driving direction, and it is the average of the velocities

on the left (uleft) and on the right (uright) wheel:

𝑢 = 𝐾 𝑒 + 𝐾

 (13)

with Kp and Kd the proportional and derivative gains for PD

control. Subscript p denotes position-related variables.

Orientation control is responsible for supplying the proper

orientation while the robot moves to the target position. To

this end, first, the orientation error is found using (14). Then

based on this error, PD2 produces an angular velocity (ω),

which is the derivative of θ and is equal to the difference in

the wheel velocities divided by the wheelbase (Wb), according

to (15).

𝑒 = 𝜃
 − 𝜃 (14)

𝜔 = 𝐾 𝑒 + 𝐾

 (15)

Here ∆ denotes the difference in the relevant variables

between two sampling periods, subscript θ denotes the

variables pertinent to orientation. Angular velocity (𝜔) is

used to obtain the necessary rotation of the robot while it

moves to the target position. The rotation is achieved by

using different velocities for the robot’s two wheels. The

velocities of the wheels are calculated in the ζ(·) block

according to (16).

𝜁(𝑢, 𝜔) = *
𝑢 = 𝑢 +

for the right wheel

𝑢 = 𝑢 −

for the left wheel

(16)

Here Wb is the distance between the two wheels called the

wheel base. The control equation described above is executed

for each robot at each sampling time interval.

III EXPERIMENTAL SETUP

The experimental setup [14], implemented at the Delft

Center for Systems and Control (DCSC), consists of a

platform where five mini robots were driven around. The

robots were connected wirelessly to a central computer close

to the platform and were controlled by this computer. A

camera was positioned above the platform and connected to

the computer via a USB cable. The camera acquired images

used to calculate the positions of the robots via image

recognition. Fig. 4 shows a block diagram and a photo of the

setup.

The experimental platform consists of the following parts:

a platform, five mini-robots, wireless communication

between the robots and the central computer, a camera, image

recognition software, and the central computer. The

specifications for these parts can be summarized as follows:

Platform: Its size was chosen as 1.5m x 1m. It has

borders with a height of 75 mm to ensure that the robots do

not accidentally fall off the platform.

Robots: The setup has five Miabot Pro robots produced by

Merlin Robotics in the UK. The Miabot Pro is a small cube

with a size of 75 × 75 × 75 mm and a weight of 0.55kg. It

has two wheels driven by two electric motors and a battery

with a maximum charge cycle of 5 hours (about 1 hour when

operated continuously). Its processor’s specifications are

Atmel ATMega64, a speed of 14.5 MIPS (RISC), the

program memory of 64Kb flash, a data memory of 4 Kb

SRAM, and nonvolatile storage of 2 Kb EEPROM. It has an

8 user I/O or 10-bit A/D expansion port. The robot has no

built-in default sensor. The maximum speed of the robots is

3.5 m/s. The robots are wirelessly controlled by the central

computer. They have a built-in Bluetooth connection with a

maximum data rate of 115.2 kbps Bluetooth server used with

the central computer, as shown in Fig. 4. One Bluetooth

server can communicate with up to seven robots, and it is

connected to the computer via a regular LAN network. When

a connection is created between a robot and a PC, a virtual

COM port is opened on the PC to receive and send

commands. The communication is performed via a Matlab

program which does not require the installation of additional

software.

Camera: A camera, Lumenera Lu075c, is mounted 1.7 m

above the platform. The camera has 640 × 480 pixels

resolution, 60 fps frame rate, and a CCD sensor. It was

chosen for its high image sharpness, color depth, and frame

rate. This camera only needs a USB cable connection to

enable the data transfer and power supply. The camera

images are used to observe the position of the robots via

image recognition software which runs on the central

computer.

Computer: The central computer determines the robots’

IDs and positions using image recognition, communicates

with the robots, and runs customized Matlab programs to

control the robots. For image recognition, codes from the

robot soccer team of the University of Nottingham and the

University of Twente were reused [14]. Their image

recognition approach is described in [15] and [16]. This

software contains functions for initializing and setting up the

camera, starting or stopping the capturing of images,

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

11

calculating the robot’s positions from the images, and

stopping the camera. The software was compiled as a MEX

file that provides the robot’s ID, position (x, y) in meters, and

orientation (θ) in radians.

Figure 4 Block diagram and photo of the setup.

IV EXPERIMENTAL RESULTS

The path planning method explained in the previous sec-

tions was implemented in a Matlab program whose flow

chart is shown in Fig. 5. Three groups of experiments were

performed on the setup: Aggregation formation, moving to

the goal, and following the moving goal. For these experi-

ments, the swarm size (N) and the maximum generation

number (Gmax) were set to 10 considering fast on-line com-

putation time. Fig. 2 proves that these numbers are sufficient

for the experiments. The parameters of the potential function

in (7) are a=0.1, b = 20 and c = 0.01. Djk parameters are

listed inTable 1.

TABLE 1

Desired distance parameter values for two robots

Desired distance between two robots Djk

10 cm 5.10−4

15 cm 3.10−3

20 cm 5.10−3

25 cm 1.10−2

30 cm 2.10−2

35 cm 3.10−2

40 cm 4.10−2

45 cm 5.10−2

The a, b, c parameter values and Djk in Table 1 were de-
termined by a trial-and-error curve analysis of the func-
tion in (7) in a simulation environment. The function in (7)

with parameters of a=0.1, b = 20, and c = 0.01 has a mini-

mal value at the relevant distance between two robots for the

respectiveDjk value given in Table 1. Fig. 6 shows the curves

for some Djk values against the distance between two robots

to provide a general idea about their function in this work.

Djk is the value that must be chosen before the experiment

according to the desired distance between jth and kth robots.

These values are assigned as a square matrix determined by

the number of robots (nr) in the program. For instance, if we

use two robots on the platform and the desired distance

between them is 15 cm, then this matrix would be

𝐷 = [
0 0.003

0.003 0
]

Three group experiments were performed on the setup

according to the procedure outlined below:

- Calibrate the image processing software via an inter-

face program

- Select the experiment type: Aggregation formation,

Moving to goal, Following the moving goal

- Select the weight factors of the main cost function in

(5)

 if fixed or moving goals are used for the robots,

then γ1 ≥ 1; otherwise, γ1 = 0.

 if the desired distance between the robots is

used, then γ2 = 1; otherwise, γ2 = 0.

 if obstacles on the platform are defined or if

more than one robot is used, then γ3 = 1; other-

wise, γ3 = 0.

- Assign the constants or parameters for the program:

Swarm size (N), maximum generation number

(Gmax), wheelbase (Wb), robot IDs to be used,

physical size of the platform, server IP, obstacles

(Obs), desired distance between the robots (D =

[Djk]), potential field function parameters (a, b, c),

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

12

fixed or moving goal(s), etc.

- Run the program to perform the experiment

- Obtain the results and record data

Figure 5 Flow chart for the real-time program.

A Aggregation formation experiment
The purpose of an aggregation formation experiment is to

gather robots on the setup from their initial positions to the

desired final form, which is predetermined by setting the D

= [Djk] matrix to the relevant values by the user. In the

experiments, robots are initially placed manually on any of

the corners on the platform at any orientation. For this task,

γ1 in (5) is set to zero since there is no fixed goal position

for the robots, γ2 is set to 1 to obtain the distance between

any two robots (j
th

 and k
th

) defined by Djk. Although there is

no fixed obstacle on the platform, γ3 is set to 1 since each

robot is a dynamic obstacle that the others must avoid to

prevent possible collisions with the parameter of δ
obs

=0.15 in

(9).

The aggregation experiment was done by placing robots

two-by-two onto two cross corners of the platform, facing

the center of the platform. The distance between the robots

in their final positions is defined by taking D = [Djk] matrix

(17).

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

13

Figure 6 Curves of the function in (7) for some Djk values versus distance

between two robots (a=0.1, b = 20 and c = 0.01)

𝐷 = [

0 0 01
0 01 0

0 003 5 10

5 10 5 10

5 10 5 10

5 10 5 10
0 0 01
0 01 0

] (17)

The program whose flow chart is given in Fig. 5 was

designed to record the related data for each robot throughout

the experiment conducted. Fig. 7 shows the observed results:

Fig. 7a shows the positions of the robots on the platform

during the experiment. The change of distance between two

robots is given in Fig. 7b-d. In these figures, the desired

distances between two robots are drawn with dotted lines.

The aggregation behavior was generated by the algorithm

depicted in Fig. 5. At the end of this experiment, the robots

were positioned close to each other as defined and kept the

desired distance between each other. Then the manual

position disturbances were applied to each robot at different

times. Fig. 8 shows the regulation of these disturbances

throughout the experiment. As seen from the figure, manual

disturbances were applied to R1 at t=5 s, R2 at t=12 s, R3 at

t=30 s, and R4 at t=14 s time instances. These disturbances

were eliminated by applying control signals given in Fig. 9.

After applying the appropriate control actions, each robot

returned to where it should be close to its previous position

in an acceptable tolerance interval. Fig. 10 shows the result

of another experiment with five robots.

Figure 7 Experimental result for the aggregation task with four mobile robots: positions (a), distance between R1 and R2 (b), distance

between R1 and R3 (c), distance between R1 and R4 (d).

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

14

Figure 8 Changing positions under manual disturbances and regulations of them: Changing position for R1 (a), changing position for R2 (b),

changing position for R3 (c), and changing position for R4 (d).

Figure 9 Control signals applied to the robots to regulate the disturbances.

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

15

Figure 10 Aggregation task with five robots: positions (a), distance between R1 and R3 (b), distance between R2 and R3 (c), distance between

R3 and R4 (d).

B Following a moving goal experiments
In this group of experiments, only one robot was used on

the platform without obstacles to follow a moving goal. For

this task, since there was only one robot on the platform, the

parameters in (5) are set to γ1=1, γ2=0, and γ3=0. The search

radius was recorded as three times that of equation (4) to

enable quicker robot movement since the moving goal

position changes quickly.

The experiment with a robot to follow a moving goal

shaped like a figure eight was executed. The results of this

experiment are shown in Fig. 11. As can be seen from Fig.

11a, the proposed method determined positions precisely on

the goal trajectory. The robot has followed this trajectory

with a delay of approximately 0.7s which occurred because

there was a large distance between the robot’s initial position

and the initial trajectory position on the platform, as seen in

Fig. 11b.

The setpoint of the PD controller is the point determined

by the PSO at the current time interval. For this reason,

unfortunately, the PD control cannot handle the robot’s

movement in one sample time. As seen in Fig. 11a, the

robot’s motion is on the exact trajectory except for the

bottom left and top right areas. In these areas, the robot takes

turning commands from the controller according to its

current and goal positions (see Fig. 11b and d). These sharp

turning commands cause the robot to spin; hence the robot’s

position departs slightly from its trajectory. Since our

primary aim is to obtain the PSO algorithm’s path planning

performance, we were not concerned about the details of this

problem.

C Moving to fixed target points experiments

The third task chosen was to move the robots from an

initial position to fixed target positions in the environment

with obstacles. For the task, the parameters in (5) were set

to γ1=1, γ2=0, and γ3=1. δ
obs

 in (9) was set to 0.10 and 0.20

for static obstacles and dynamic obstacles (i.e., the other

robots), respectively. The LSA radius is the value defined

by (4).

This task was experimentally analyzed by putting two

robots on each of the opposite diagonal corners of the

platform. Two robots were initially directed towards the

center, and the other two robots were directed outward on

the platform. Fig. 12 illustrates the obtained experimental

results. In the figure, the red points and the green lines

show the positions and orientations of the robots. The black

points are the target positions indicated by the PSO of the

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

16

current time interval. As seen from the figure, each robot

has arrived at its goal position by following the positions

(p
gb

) determined by the PSO. The paths of R2 and R4 are

especially significant in terms of their avoidance of

collisions and obstacles. The path of R4 clearly shows the

avoidance of obstacles: as the robots approach each other,

the PSO dictates that the robot R4 wait at its actual position

for the time interval 7–10 s. Then the PSO generates a

suitable path by keeping a safe distance between the robots

and obstacles. The control signals produced in the

experiment are given in Fig. 13.

In Fig. 14, experimental results for another experiment

with different initial positions are shown. The third

experimental result with a denser obstacle environment is

also given in Fig. 15. As seen in the diagram, robots were

initially positioned near the center of the platform, and their

goal positions were defined near the corners. Robots reached

their goals by avoiding obstacles and collisions.

Figure 11 Tracking a figure-8 shaped trajectory with one mobile robot: positions in 2D (a), positions in time (b), applied control signals (c),

and angular velocity ω and orientation θ (d).

V CONCLUSION

This paper introduces an on-line path planning strategy

based on the PSO for a swarm of mobile robots in real time.

The proposed method uses an on-line independent PSO for

each mobile robot in a swarm to determine the most

appropriate position around the actual position of the robot

(called local search area, or LSA) for the next step. This

method searches for possible candidate positions using PSO

search with a hybrid structural cost function consisting of

three parts. While it searches for the target position of each

agent (robot) for the next sampling period, it also considers

avoiding collisions with obstacles and other agents as well

as achieving the desired formation such as aggregation,

moving to the goal, and following a trajectory on the

platform. This strategy has been tested in an experimental

setup. The performance obtained from various experiments

results shows the availability and applicability in real-time

of the proposed method.

ACKNOWLEDGMENT

This research was funded by the Scientific and

Technological Research Council of Turkey (TUBITAK)

under Grant 2219/2009.

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

17

Figure 12 Four mobile robots in an environment with obstacles.

Figure 13 Control signals applied (a) and angular velocity (b) determined by the controllers for R4; measured positions changing with time

for R4 (c) and R2 (d).

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

18

Figure 14 Path planning performance of going to fixed goals defined around the center of the platform with four robots located in the corners

(a) and control signals applied to the robots (b).

Figure 15 Path planning performance of going to fixed goals defined nearby the corners with four robots initially located in the center of the

environment with denser obstacles.

C. Karakuzu and R. Babǔska / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)

19

REFERENCES

[1] Pal, N. S., Sharma, S., ―Robot path planning using

swarm intelligence: A survey‖. International Journal of

Computer Applications, 83 (12), pp.5-12, 2013.

[2] Alomari, A., Phillips, W., Aslam, N., Comeau, F.,

―Swarm intelligence optimization techniques for

obstacle-avoidance mobility-assisted localization in

wireless sensor networks‖. IEEE Access, vol. 6, pp.

22368-22385, 2018.

[3] Duan, H., Qiao, P., ―Pigeon-inspired optimization: a

new swarm intelligence optimizer for air robot path

planning‖. International Journal of Intelligent

Computing and Cybernetics, vol. 7, no. 1, pp. 24-37,

2014.

[4] Contreras-Cruz, M. A., Ayala-Ramirez, V., Hernandez-

Belmonte, U. H., ―Mobile robot path planning using

artificial bee colony and evolutionary programming‖.

Applied Soft Computing, vol. 30, pp. 319-328, 2015.

[5] Doctor, S., Venayagamoorthy, G. K., Gudise, V. G.,

―Optimal pso for collective robotic search applications‖.

In: Proceedings of the 2004 Congress on Evolutionary

Computation (CEC2004). Vol. 2, pp. 1390-1395,

Portland, Oregon, 19-23 June 2004.

[6] Lei, K., Qiu, Y., He, Y., ―A novel path planning for

mobile robots using modified particle swarm

optimizer‖. In: Proceedings of 1st International

Symposium on Systems and Control in Aerospace and

Astronautics (ISSCAA 2006). Vol. 1-2, pp. 981-984,

Harbin, China, 19-21 January 2006.

[7] Chen, X., Li, Y., ―Smooth path planning of a mobile

robot using stochastic particle swarm optimization‖. In:

Proceeding of the 2006 IEEE International Conference

on Mechatronics and Automation (IEEE ICMA 2006).

Vol. 1-3, pp. 1722-1727, Luoyang, China, 25-28 June

2006.

[8] Vahdat, A. R., NourAshrafoddin, N., Ghidary, S. S.,

―Mobile robot global localization using diferential

evolution and particle swarm optimization‖. In:

Proceeding of IEEE Congress on Evolutionary

Computation (CEC 2007), pp. 1527-1534, Singapore,

Singapure, 25-28 September 2007.

[9] Rigatos, G. G., ―Distributed gradient and particle swarm

optimization for multi-robot motion planning‖.

Robotica, vol. 26, pp. 357-370, 2008.

[10] Wong, C.-C., Wang, H.-Y., Li, S.-A., ―Pso-based

motion fuzzy controller design for mobile robots‖.

International Journal of Fuzzy Systems, vol. 10, no. 1,

pp. 24-32, March 2008.

[11] Bratton, D., Kennedy, J., ―Defining a standard for

particle swarm optimization‖. In: Proceedings of the

2007 IEEE Swarm Intelligence Symposium (SIS 2007).

Vol. 2, pp.120-127, Hilton Hawaiian Village, Honolulu,

Hawaii, 1-5 April 2007.

[12] Gazi, V., ―Swarm aggregations using artificial potential

and sliding-mode control‖. IEEE Transaction on

Robotics, vol. 21, no. 6, pp. 1208-1214, 2005.

[13] Vieira, F. C., Medeiros, A. A. D., Alsina, P. J.,

―Dynamic stabilization of a two-wheeled differentially

driven nonholonomic mobile robot‖. In: Proceedings of

the Simpósio Brasileiro de Automação Inteligente

(SBAI 2003), pp. 620-624, Bauru, SP, Brazil, August

2003.

[14] de Jong, W., ―Development of an experimental research

platform with mobile robots including an application of

formation control‖, Master's thesis, Delft Center for

Systems and Control, Delft University of Technology,

Delft, The Netherland, 27 August 2008.

[15] Kooij, N., ―The development of a vision system for

robot soccer‖, Master's thesis, Department of Computer

Science, Distributed and Embedded Systems Group,

University of Twente, Twente, The Netherland, 2003.

[16] Schepers, E., ―Improving the vision of a robot soccer

team‖, Master's thesis, Department of Computer

Science, Distributed and Embedded Systems Group,

University of Twente, Twente, The Netherland, 2004.

Cihan Karakuzu is full professor at the Department of
Computer Engineering, Faculty of Engineering, Bilecik Şeyh
Edebali University, Bilecik, Turkey. His research interests include
intelligent and artificial learning systems, fuzzy and neuro-fuzzy
systems, data-driven models, system identification and modeling
and meta-heuristic algorithms.

Robert Babuška is full professor at the Department of Cognitive
Robotics, Faculty of Mechanical, Maritime and Materials
Engineering, Delft University of Technology, Delft, The
Netherland. His research interests include reinforcement learning,
nonlinear control, data-driven model construction, deep learning,
system identification, state-estimation, model-based adaptive
control and dynamic multi-agent systems. He has been involved in
the applications of these techniques in robotics, mechatronics, and
aerospace.

