
 

                                                                                                                                                                                                                          

BSEU JOURNAL OF ENGINEERING RESEARCH AND TECHNOLOGY, VOLUME 2, ISSUE 1, JUNE 2021   

 

  

1*Corresponding author mail: cihan.karakuzu@bilecik.edu.tr (https://orcid.org/0000-0003-0569-098X) 
Computer Engineering, Bilecik Seyh Edebali University, Bilecik-Turkey 
2 Second author mail: r.babuska@tudelft.nl  (https://orcid.org/0000-0001-9578-8598)   
Department of Cognitive Robotics, Delft University of Technology, Delft-Netherlands 

 

On-line Path Planning for Swarm of Mobile Robots Based on 

Particle Swarm Optimization 

C. Karakuzu
1*  

 and R. Babuška
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Abstract— Generally, most of the related studies in the literature report only simulation results on path planning 

problems. In this paper, a PSO-based path planning method is proposed and applied in real-time experiments to determine an 

appropriate on-line path for a swarm of mobile robots in a 2D environment.  This paper presents a novel on-line path 

planning strategy for a swarm of mobile robots. The method is based on particle swarm optimization (PSO). Each robot is 

considered an agent, and an independent particle swarm is used to find an appropriate path in real time. At each sampling 

instant, the PSO algorithm optimizes the target position to be for the robot at the next time step. The PSO cost function 

accounts for the distance of the robot from the goal, the positions of the other robots, and obstacles in the environment. The 

proposed on-line path planning strategy has been implemented and evaluated on an experimental setup. Experimental results 

for three different path planning scenarios under varying conditions are included in this paper. The most significant 

contributions of this study are the results of the proposed method in real-time experiments.  
 

Index Terms— path planning, mobile robot, particle swarm optimization, robot control, local search.  

 

I INTRODUCTION

 
Path planning is the task of determining an optimal path 

from an initial position to a target position while avoiding 

collisions between robots and obstacles in the environment. 

This task may be achieved either through off-line path 

planning or through on-line, real-time path planning. The 

advantage of real-time path planning is that the path can be 

replanned if the situation changes, such as in an environment 

with dynamic obstacles. In this paper, we propose a real-time 

path planning method based on particle swarm optimization. 

 

Computationally, path planning is an NP-complete problem. 

Therefore, the computational time required to solve a problem 

increases dramatically when the scale of the problem increases 

[1]. This is the main reason swarm intelligence techniques have 

recently received considerable attention in mobile robot path 

planning. These techniques are inspired by the social behavior 

of animals such as birds or bees. Typical examples of swarm 

intelligence methods are particle swarm optimization (PSO), 

inspired by flocking bird swarm behavior, and an artificial bee 

colony (ABC), inspired by the foraging behavior of honey 

bees. The use of swarm intelligence in path planning can be 

found in the literature such as [2], [3], and [4]. In this paper, a 

PSO algorithm is used as it is computationally more effective 

than other swarm intelligence algorithms, and it finds a good 

solution quickly. Below, several remarkable studies are 

summarized that coincide with the scope of this study. 

 

Doctor et al.[5] studied single-target and multiple-target 

search using PSO in a simulation environment. They 

concluded that PSO is quite reliable in target-searching 

applications. Lei et al. [6] and Chen and Li [7] used PSO and 

its stochastic variant S-PSO to solve a path planning problem 

for mobile robots in a simulated environment with obstacles. 

The simulation results of Chen and Li (2006) demonstrate 

that the proposed S-PSO algorithm is effective thanks to its 

exploration ability and low computational costs with small 

swarm size. Vahdat et al. [8] compared differential evolution 

(DE) and PSO methods with a standard Monte Carlo 

localization (MCL) algorithm for a mobile robot localization 

problem. Rigatos [9] used distributed gradient and particle 

swarm optimization for multi-robot motion planning. The 

performance of both approaches has been evaluated through 

simulation tests in a 2D environment with polyhedral 

obstacles. Even though both performance methods were 

satisfactory, the distributed gradient had advantages over 

particle swarm optimization. A drawback of that method, 

however, is that it needs complex gradient computations. In 

[10], two fuzzy controllers, called distance and angle 

controllers, were designed to control a mobile robot in a 

simulated 2D environment without obstacles. The PSO was 

used to determine optimal parameters of the fuzzy 

controller’s membership functions so that the robot could 

effectively move to the desired position. 

 

All the above papers report only simulation results. In this 
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paper, a PSO- based path planning method is proposed and 

applied in real-world experiments to determine an appropriate 

on-line path for mobile robots moving as a swarm in a 2D 

environment with obstacles. This method requires 

information only about the robot’s attitude (position and 

orientation) and registers on-line path planning in real time. 

Each mobile robot uses its own independent particle swarm 

optimizer to search for the most appropriate position for the 

next sampling time in a local search area formed around the 

current position. In this way, a path for the robot is 

determined step by step. Experimental results are given for 

three different path planning scenarios. The main contribution 

of our work is the application of this PSO-based method to an 

experimental setup in real-time. 

The rest of the paper is organized as follows: Section II 

introduces the algorithm for path planning with obstacle 

avoidance; Section III presents the experimental setup used in 

this study; Section IV summarizes the experimental results 

obtained with the proposed path planning strategy. In the last 

section, conclusions are drawn. 

II ON-LINE PATH PLANNING BASED ON PSO 

The aim is to determine an appropriate path for each robot 

in the swarm from some initial position to a specified goal 

position without colliding with other robots and obstacles. 

 
A  PSO algorithm 
The stochastic PSO algorithm called S-PSO [7] is used in this 

study. The algorithm is defined by the following equations: 

 

𝑣 (𝑛 + 1) = 𝜓(𝑛)[𝑣 (𝑛) + 𝑐 𝑟 (𝑝 
  
(𝑛) − 𝑝 (𝑛)) +

𝑐 𝑟 (𝑝
  (𝑛) − 𝑝 (𝑛)) + 𝜆𝑅(𝑛)]     (1) 

 

𝑝 (𝑛 + 1) = 𝛼𝑝 (𝑛) + 𝑣 (𝑛 + 1) +
   

         
(𝑐 𝑟 𝑝 

  
(𝑛) +

𝑐 𝑟 𝑝
  (𝑛))   (2) 

The symbols have the following meaning: pi is the position 

and i the velocity of the ith particle; c1, c2 are learning 

constants, and α is the learning rate. Furthermore, r1 and r2 

are uniformly distributed random numbers, λ is a small 

constant, and R is a vector including zero-mean, unit-variance 

normally distributed random numbers. The superscripts pb 

and gb refer to the personal best and global best particle, 

respectively. The personal best particle (p
pb

) corresponds to 

the particle’s own best-known position found so far. The 

global best particle (p
gb

) corresponds to the best one found so 

far among all the particles. After the last iteration, denoted by 

Gmax, the global best particle is assigned as the final 

solution. The inertia term 𝜓(n) decays to zero as the number 

of iterations n grows [7]: 

𝜓(𝑛) =
   

   
    (3) 

Bratton and Kennedy [11] showed that this inertia term 
improves the PSO algorithm’s performance. 

 
The above algorithm was implemented in Matlab with the 

following parameter values determined through a series of 

simulation experiments: c1 = c2 = 2.5, α = 0.5,  λ=10
−2

.  

Particle positions are restricted within the physical limits of 

the area where the robots move, and their velocities are 

restricted to [−r/5    r/5] with the local search area radius r 

explained in the following section. 

B Path planning strategy 
The PSO algorithm explained in the previous section was 

applied to determine in real time the most appropriate 

position of a mobile robot in a 2D  environment. Each mobile 

robot uses its own PSO swarm with N particles associated 

with the candidate positions of the robot. Figure 1 illustrates 

the strategy used to determine the path of a robot. The target 

position for the next sampling instant is searched in the 

neighborhood with radius r of the robot’s current position pa. 

The area enclosed by the dashed line circle is called the local 

search area (LSA). 

 

Figure 1 Local search area used for the path planning 

 

The radius r of LSA is defined by Eq (4), where ∆t is the 
sampling period of the system and umax is the maximum 
velocity control signal that can be applied to the robot (0.25 
m/s). 

r = umax ∆t  (4) 

In Fig. 1, p
t
 denotes the target position found by the PSO 

after a predefined maximum number of generations Gmax.  

This position is set as the target for the robot for the next step.  

The distance between the actual position p
a
 and the target 

position p
t
 is denoted by d, and ∆θ is the change of the 

robot’s orientation during ∆t. At each sampling instant, the 

particle positions are initialized randomly with a uniform 

distribution within LSA, and their velocities are restricted to 
[−r/5    r/5].  

 
To determine the local best and the global best particle, the 

cost value Ji of each particle i is calculated by Eq (5), where 

γ1, γ2, γ3 ∈ R
+
 are weight factors. 

 

 𝐽 = 𝛾 ‖𝑝 − 𝑝
    ‖ + 𝛾 𝐹 

    
+ 𝛾 𝐹 

       (5) 
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The first term is the Euclidean distance between the 

current position of the ith particle and the eventual goal 

position of the robot. The second term takes into account the 

mutual distances between the robots by using potential 

functions [12] given in Eqs (6) and (7). The last term is 

defined in Eqs (8) and (9) to avoid obstacles [7]. 

𝐹 
    

=∑ ∑ 𝑓  
   

  

   

  

   

    (6) 

𝑓  
   

=
 

 
‖𝑝 

 
− 𝑝 

 ‖ +
  

 
𝑒
 
‖ 
 
 
   

 ‖ 

      (7) 

𝐹 
   =∑ 𝑓 

    
      

   
   (8) 

𝑓 
   = *

 

‖       ‖
−

 

     
if ‖𝑝 − 𝑂𝑏𝑠 ‖ ≤ 𝛿

    

0 if ‖𝑝 − 𝑂𝑏𝑠 ‖ > 𝛿
    

 (9) 

In the above equations, nr and h respectively represent the 

number of mobile robots and the number of obstacles; a, b 

and c are constant parameters of the potential functions, and 

D is the safe distance defined to avoid collision between two 

mobile robots. Obs and δ
obst

 respectively represent obstacle 

position and the safety margin defined to ensure that the robot 

passes without hitting the obstacle. The last term in Eq.(5) is 

active if the distance between the robot and an obstacle is less 

than a safety margin δ
obst

. Each robot found within the safety 

margin is considered an obstacle and therefore it may be a 

dynamic obstacle for the other robots.   This term is important 

in that it emphasizes that the method also works for dynamic 

obstacles. 

 
Now, we have the cost values for each particle in the 

swarm. The particle with the minimum cost is assigned as the 

global best particle p
gb,

 and each particle is assigned as its 

own personal best for the first generation. Then for the next 

generation, the swarm is updated according to the personal 

best and global best particles. Finally, the cost values of the 

new particles are calculated again using equation (5). If a 

particle has a lower cost than the global best particle of the 

previous generation, this particle is assigned as the global 

best particle. The personal best particle is the particle’s own 

best-known position found so far among the current and 

previous generations for each particle. The swarm is updated 

again according to the new personal best and global best 

particles. For each generation, the personal best value of each 

particle and the global best found so far are updated using 

current and prior cost values. The algorithm is conducted in 

the same way until the generation number n reaches the 

maximum generation number (Gmax). At the end of the 

Gmax generation, the global best particle of each PSO swarm 

is assigned as the new target position for the related robot. 

Then a motion control unit calculates the necessary control 

signal and sends it to the robot to reach the target position. 

Fig. 2 shows the positions of particles separately 

according to the generation numbers for the mobile robot in a 

sampling time interval. As seen in the figure, initial particles 

are positioned randomly around the robot's actual position of 

the first generation. As the generation number increases, 

particles begin to change their positions in a particular 

direction. The last generation particles have their positions 

near the point marked as the global best. 

C Robot motion control 
After the target positions of each robot for the next step are 
determined by the relevant PSO swarm, as explained in the 

previous subsection, the main problem is to produce a 

suitable control signal to implement this strategy in real time. 

The control structure given in Fig. 3 has been designed for 

this purpose. In this structure, the classical PD control 

method is preferred thanks to its simplicity.  

 

Figure 2 Positions of particles produced for a mobile robot in a 

sampling time interval 

 

Figure 3 Motion control structure for a mobile robot. 

 

The integral term is not used because steady-state errors can 

be tolerated by the nature of the method. The structure 

includes two PD controllers that are used separately for each 

robot in a robot swarm. While PD1 produces a forward or 

backward movement control signal (u), at the same time, PD2 

produces an angular velocity (ω) to rotate the robot to the 

needed direction. Then these signals are sent to ζ() block. 

This block calculates the velocities in m/s to move the robots 

toward the target position (p
t
). The calculation realized by the 

motion control unit is defined as follows: the robot’s target 

position (pt) is determined by its own PSO as: 
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 p
t
 = [x

t
 y

t
]   (10) 

where x
t 

and y
t
 denote the apsis and ordinate of the target 

position. The target orientation θ
t
 of a robot is calculated by: 

𝜃 = 𝑡𝑎𝑛  (
     

     
)        (11) 

where x
a
 and y

a
 denote the coordinates of the robot’s actual 

position. The motion control from an actual position to a 

target position can be divided into two sub-tasks: position and 

orientation control. The first one produces the main control 

signal (u) to move a robot to a target position (x
t
,y

t
). PD1 

accomplishes this task according to the positional error. As 

the result of an analysis given in [13], the positional error (ep) 

is formulated as in (12). 

𝑒 = √(𝑥
 − 𝑥 ) + (𝑦 − 𝑦 )  𝑐𝑜𝑠(𝜃 − 𝜃 )   (12)  

Based on the positional error, PD1 produces the primary 

control signal (u) according to (13). u is the robot's velocity 

in the driving direction, and it is the average of the velocities 

on the left (uleft) and on the right (uright) wheel: 

𝑢 = 𝐾  𝑒 + 𝐾  
   

  
  (13) 

with Kp and Kd the proportional and derivative gains for PD 

control.  Subscript p denotes position-related variables. 

Orientation control is responsible for supplying the proper 

orientation while the robot moves to the target position. To 

this end, first, the orientation error is found using (14). Then 

based on this error, PD2 produces an angular velocity (ω), 

which is the derivative of θ and is equal to the difference in 

the wheel velocities divided by the wheelbase (Wb), according 

to (15). 

𝑒 = 𝜃
 − 𝜃    (14) 

  

𝜔 = 𝐾  𝑒 + 𝐾  
   

  
   (15) 

Here ∆ denotes the difference in the relevant variables 

between two sampling periods, subscript θ denotes the 

variables pertinent to orientation. Angular velocity (𝜔) is 

used to obtain the necessary rotation of the robot while it 

moves to the target position. The rotation is achieved by 

using different velocities for the robot’s two wheels. The 

velocities of the wheels are calculated in the ζ(·) block 

according to (16). 

𝜁(𝑢, 𝜔) = *
𝑢     = 𝑢 +

   

 
for the right wheel

𝑢    = 𝑢 −
   

 
for the left wheel

(16) 

Here Wb is the distance between the two wheels called the 

wheel base. The control equation described above is executed 

for each robot at each sampling time interval. 

III EXPERIMENTAL SETUP 

The experimental setup [14], implemented at the Delft 

Center for Systems and Control (DCSC), consists of a 

platform where five mini robots were driven around. The 

robots were connected wirelessly to a central computer close 

to the platform and were controlled by this computer. A 

camera was positioned above the platform and connected to 

the computer via a USB cable. The camera acquired images 

used to calculate the positions of the robots via image 

recognition. Fig. 4 shows a block diagram and a photo of the 

setup. 

The experimental platform consists of the following parts: 

a platform, five mini-robots, wireless communication 

between the robots and the central computer, a camera, image 

recognition software, and the central computer. The 

specifications for these parts can be summarized as follows: 

Platform: Its size was chosen as 1.5m x 1m. It has 

borders with a height of 75 mm to ensure that the robots do 

not accidentally fall off the platform. 

Robots: The setup has five Miabot Pro robots produced by 

Merlin Robotics in the UK. The Miabot Pro is a small cube 

with a size of 75 × 75 × 75 mm and a weight of 0.55kg.  It 

has two wheels driven by two electric motors and a battery 

with a maximum charge cycle of 5 hours (about 1 hour when 

operated continuously). Its processor’s specifications are 

Atmel ATMega64, a speed of 14.5 MIPS (RISC), the 

program memory of 64Kb flash, a data memory of 4 Kb 

SRAM, and nonvolatile storage of 2 Kb EEPROM. It has an 

8 user I/O or 10-bit A/D expansion port. The robot has no 

built-in default sensor. The maximum speed of the robots is 

3.5 m/s. The robots are wirelessly controlled by the central 

computer. They have a built-in Bluetooth connection with a 

maximum data rate of 115.2 kbps Bluetooth server used with 

the central computer, as shown in Fig. 4. One Bluetooth 

server can communicate with up to seven robots, and it is 

connected to the computer via a regular LAN network. When 

a connection is created between a robot and a PC, a virtual 

COM port is opened on the PC to receive and send 

commands. The communication is performed via a Matlab 

program which does not require the installation of additional 

software. 

Camera: A camera, Lumenera Lu075c, is mounted 1.7 m 

above the platform. The camera has 640 × 480 pixels 

resolution, 60 fps frame rate, and a CCD sensor. It was 

chosen for its high image sharpness, color depth, and frame 

rate. This camera only needs a USB cable connection to 

enable the data transfer and power supply. The camera 

images are used to observe the position of the robots via 

image recognition software which runs on the central 

computer. 

Computer: The central computer determines the robots’ 

IDs and positions using image recognition, communicates 

with the robots, and runs customized Matlab programs to 

control the robots. For image recognition, codes from the 

robot soccer team of the University of Nottingham and the 

University of Twente were reused [14]. Their image 

recognition approach is described in [15] and [16]. This 

software contains functions for initializing and setting up the 

camera, starting or stopping the capturing of images, 
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calculating the robot’s positions from the images, and 

stopping the camera. The software was compiled as a MEX 

file that provides the robot’s ID, position (x, y) in meters, and 

orientation (θ) in radians. 

Figure 4 Block diagram and photo of the setup. 

 

IV EXPERIMENTAL RESULTS 

The path planning method explained in the previous sec-

tions was implemented in a Matlab program whose flow 

chart is shown in Fig. 5. Three groups of experiments were 

performed on the setup: Aggregation formation, moving to 

the goal, and following the moving goal. For these experi-

ments, the swarm size (N) and the maximum generation 

number (Gmax) were set to 10 considering fast on-line com-

putation time. Fig. 2 proves that these numbers are sufficient 

for the experiments. The parameters of the potential function 

in (7) are a=0.1, b = 20 and c = 0.01. Djk parameters are 

listed inTable  1.   

 
TABLE 1 

Desired distance parameter values for two robots 

Desired distance between two robots Djk 

10 cm 5.10−4 

15 cm 3.10−3 

20 cm 5.10−3 

25 cm 1.10−2 

30 cm 2.10−2 

35 cm 3.10−2 

40 cm 4.10−2 

45 cm 5.10−2 

 

The a, b, c parameter values and Djk in Table 1 were de-
termined by a trial-and-error curve analysis of the func-
tion in (7) in a simulation environment. The function in (7) 

with parameters of a=0.1, b = 20, and c = 0.01 has a mini-

mal value at the relevant distance between two robots for the 

respectiveDjk value given in Table 1. Fig. 6 shows the curves 

for some Djk values against the distance between two robots 

to provide a general idea about their function in this work. 

Djk is the value that must be chosen before the experiment 

according to the desired distance between jth and kth robots. 

These values are assigned as a square matrix determined by 

the number of robots (nr) in the program. For instance, if we 

use two robots on the platform and the desired distance 

between them is 15 cm, then this matrix would be  

𝐷 = [
0 0.003

0.003 0
] 

Three group experiments were performed on the setup 

according to the procedure outlined below: 

- Calibrate the image processing software via an inter-

face program 

- Select the experiment type: Aggregation formation, 

Moving to goal, Following the moving goal 

- Select the weight factors of the main cost function in 

(5) 

 if fixed or moving goals are used for the robots, 

then γ1 ≥ 1; otherwise, γ1 = 0. 

 if the desired distance between the robots is 

used, then γ2 = 1; otherwise, γ2 = 0. 

 if obstacles on the platform are defined or if 

more than one robot is used, then γ3 = 1; other-

wise, γ3 = 0. 

- Assign the constants or parameters for the program: 

Swarm size (N), maximum generation number 

(Gmax), wheelbase (Wb), robot  IDs to be used, 

physical size of the platform, server IP, obstacles 

(Obs), desired distance between the robots  (D = 

[Djk]),  potential field function parameters (a, b, c), 
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fixed or moving goal(s), etc. 

- Run the program to perform the experiment 

- Obtain the results and record data 

 

 

Figure 5 Flow chart for the real-time program. 

 

 

A  Aggregation formation experiment 
The purpose of an aggregation formation experiment is to 

gather robots on the setup from their initial positions to the 

desired final form, which is predetermined by setting the  D  

=  [Djk]  matrix to the relevant values by the user. In the 

experiments, robots are initially placed manually on any of 

the corners on the platform at any orientation. For this task,  

γ1  in (5) is set to zero since there is no fixed goal position 

for the robots, γ2 is set to 1 to obtain the distance between 

any two robots (j
th

 and k
th

) defined by Djk. Although there is 

no fixed obstacle on the platform, γ3 is set to 1 since each 

robot is a dynamic obstacle that the others must avoid to 

prevent possible collisions with the parameter of δ
obs

=0.15 in 

(9). 

The aggregation experiment was done by placing robots 

two-by-two onto two cross corners of the platform, facing 

the center of the platform. The distance between the robots 

in their final positions is defined by taking D = [Djk] matrix 

(17).
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Figure 6 Curves of the function in (7) for some Djk values versus distance 

between two robots (a=0.1, b = 20 and c = 0.01) 

 

𝐷 = [

0 0 01
0 01 0

0 003 5 10  

5 10  5 10  

5 10  5 10  

5 10  5 10  
0 0 01
0 01 0

]   (17) 

 
The program whose flow chart is given in Fig. 5 was 

designed to record the related data for each robot throughout 

the experiment conducted. Fig. 7 shows the observed results: 

Fig. 7a shows the positions of the robots on the platform 

during the experiment. The change of distance between two 

robots is given in Fig. 7b-d. In these figures, the desired 

distances between two robots are drawn with dotted lines. 

The aggregation behavior was generated by the algorithm 

depicted in Fig. 5. At the end of this experiment, the robots 

were positioned close to each other as defined and kept the 

desired distance between each other. Then the manual 

position disturbances were applied to each robot at different 

times. Fig. 8 shows the regulation of these disturbances 

throughout the experiment. As seen from the figure, manual 

disturbances were applied to R1 at t=5 s, R2 at t=12 s, R3 at 

t=30 s, and R4 at t=14 s time instances. These disturbances 

were eliminated by applying control signals given in Fig. 9. 

After applying the appropriate control actions, each robot 

returned to where it should be close to its previous position 

in an acceptable tolerance interval. Fig. 10 shows the result 

of another experiment with five robots. 

 

Figure 7 Experimental result for the aggregation task with four mobile robots: positions  (a), distance between R1  and R2  (b), distance 

between R1  and R3  (c), distance between R1  and  R4 (d). 
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Figure 8 Changing positions under manual disturbances and regulations of them: Changing position for R1 (a), changing position for R2 (b), 

changing position for R3 (c), and changing position for R4 (d). 

 

Figure 9 Control signals applied to the robots to regulate the disturbances. 



C. Karakuzu and R. Babǔska  / On-line Path Planning for Swarm of Mobile Robots Based on Particle Swarm Optimization (2021)  

 

  

15  

Figure 10 Aggregation task with five robots: positions (a), distance between R1 and R3 (b), distance between R2 and R3 (c), distance between 

R3 and R4 (d). 

 

B  Following a moving goal experiments 
In this group of experiments, only one robot was used on 

the platform without obstacles to follow a moving goal. For 

this task, since there was only one robot on the platform, the 

parameters in (5) are set to γ1=1, γ2=0, and γ3=0. The search 

radius was recorded as three times that of equation (4) to 

enable quicker robot movement since the moving goal 

position changes quickly. 

The experiment with a robot to follow a moving goal 

shaped like a figure eight was executed. The results of this 

experiment are shown in Fig. 11. As can be seen from Fig. 

11a, the proposed method determined positions precisely on 

the goal trajectory. The robot has followed this trajectory 

with a delay of approximately 0.7s which occurred because 

there was a large distance between the robot’s initial position 

and the initial trajectory position on the platform, as seen in 

Fig. 11b.  

The setpoint of the PD controller is the point determined 

by the PSO at the current time interval. For this reason, 

unfortunately, the PD control cannot handle the robot’s 

movement in one sample time. As seen in Fig. 11a, the 

robot’s motion is on the exact trajectory except for the 

bottom left and top right areas. In these areas, the robot takes 

turning commands from the controller according to its 

current and goal positions (see Fig. 11b and d). These sharp 

turning commands cause the robot to spin; hence the robot’s 

position departs slightly from its trajectory. Since our 

primary aim is to obtain the PSO algorithm’s path planning 

performance, we were not concerned about the details of this 

problem. 

 

C Moving to fixed target points experiments  

The third task chosen was to move the robots from an 

initial position to fixed target positions in the environment 

with obstacles. For the task, the parameters in (5) were set 

to γ1=1, γ2=0, and γ3=1. δ
obs

 in (9) was set to 0.10 and 0.20 

for static obstacles and dynamic obstacles (i.e., the other 

robots), respectively. The LSA radius is the value defined 

by (4). 

This task was experimentally analyzed by putting two 

robots on each of the opposite diagonal corners of the 

platform. Two robots were initially directed towards the 

center, and the other two robots were directed outward on 

the platform. Fig. 12 illustrates the obtained experimental 

results. In the figure, the red points and the green lines 

show the positions and orientations of the robots. The black 

points are the target positions indicated by the PSO of the 
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current time interval. As seen from the figure, each robot 

has arrived at its goal position by following the positions 

(p
gb

) determined by the PSO. The paths of R2 and R4 are 

especially significant in terms of their avoidance of 

collisions and obstacles.  The path of R4 clearly shows the 

avoidance of obstacles:  as the robots approach each other, 

the PSO dictates that the robot R4 wait at its actual position 

for the time interval 7–10 s.  Then the PSO generates a 

suitable path by keeping a safe distance between the robots 

and obstacles. The control signals produced in the 

experiment are given in Fig. 13. 

In Fig. 14, experimental results for another experiment 

with different initial positions are shown. The third 

experimental result with a denser obstacle environment is 

also given in Fig. 15. As seen in the diagram, robots were 

initially positioned near the center of the platform, and their 

goal positions were defined near the corners. Robots reached 

their goals by avoiding obstacles and collisions. 

Figure 11 Tracking a figure-8 shaped trajectory with one mobile robot: positions in 2D (a), positions in time (b), applied control signals (c), 

and angular velocity ω and orientation θ (d). 

 

V  CONCLUSION 

This paper introduces an on-line path planning strategy 

based on the PSO for a swarm of mobile robots in real time. 

The proposed method uses an on-line independent PSO for 

each mobile robot in a swarm to determine the most 

appropriate position around the actual position of the robot 

(called local search area, or LSA) for the next step. This 

method searches for possible candidate positions using PSO 

search with a hybrid structural cost function consisting of 

three parts.   While it searches for the target position of each 

agent (robot) for the next sampling period, it also considers 

avoiding collisions with obstacles and other agents as well 

as achieving the desired formation such as aggregation, 

moving to the goal, and following a trajectory on the 

platform. This strategy has been tested in an experimental 

setup. The performance obtained from various experiments 

results shows the availability and applicability in real-time 

of the proposed method. 
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Figure 12 Four mobile robots in an environment with obstacles. 

 

 

Figure 13 Control signals applied (a) and angular velocity (b) determined by the controllers for R4; measured positions changing with time 

for R4 (c) and R2 (d). 
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Figure 14 Path planning performance of going to fixed goals defined around the center of the platform with four robots located in the corners 

(a) and control signals applied to the robots   (b). 

 

 

Figure 15 Path planning performance of going to fixed goals defined nearby the corners with four robots initially located in the center of the 

environment with denser obstacles. 
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