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Correlation Studying the Maple Package of the Bessel Equation 

with a Random Inhomogeneous Part 
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Abstract—In this paper, a correlation study of the inhomogeneous Bessel equation is carried out. These studies 
are implemented in the mathematical package Maple; the surfaces of the correlation function and the variance 
tables of partial solutionscorresponding to a given correlation function of an inhomogeneous part - either a 
random function or derivatives of thisrandom function are constructed. The theory of random functions and the 
theory of Bessel functions are mainly used. If we takeinto account that the formulas obtained for the correlation 
functions of solving such inhomogeneous equations are associated with great computational difficulties, then the 
results obtained in the Maple environment acquire specialpractical interest. 
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An inhomogeneous Bessel equation with a random func-

tionin the right part is investigated: 

𝑑 

𝑑𝑡 
𝑌(𝑡) +

1

𝑡

𝑑

𝑑𝑡
𝑌(𝑡) + (1 −

𝑣 

𝑡 
)𝑌(𝑡) =

𝑑 

𝑑𝑡 
𝑋(𝑡),   𝑘

= 0,1,2, … 

where X(t) is a stationary random function with zero math-

ematical expectation and with a known correlation function; 

here k = 0 corresponds to the case, for example, when a 

signal about the instantaneous values of the coordinates of a 

rapidly moving object is received at the input of the system, 

k = 1 is the case of a speed signal, k = 2 is the case of a 

signal about the accelerationof motion. 

To determine the correlation function of a particular so-

lution of a linear differential equation satisfying the zero-

initial condition, it is first necessary to find the correspond-

ing weight function.  

The weight function of a dynamical system described 

by this differential equation is determined using a fundamen-

tal system of solutions of the corresponding homogeneous 

equation{𝐽 (𝑡), 𝑁 (𝑡)} (𝐽 (𝑡) − Bessel function of the first 

kind, 𝑁 (𝑡)  − Bessel function of the second kind) ([1]): 

𝑝(𝑣, 𝑡, 𝑡1) =
[𝐽 (𝑡1)𝑁 (𝑡) − 𝐽 (𝑡)𝑁 (𝑡1)]

𝑊[𝐽 ,𝑁 ](𝑡1)
. 

As you know, the Wroskian determinant ([2]) 

𝑊[𝐽 ,𝑁 ](𝑡1) = 𝐽 (𝑡1)𝑁 
 (𝑡) − 𝐽 

 (𝑡)𝑁 (𝑡1) =
2

𝜋 ∙ 𝑡1
 

and, therefore 

𝑝(𝑣, 𝑡, 𝑡1) =
𝜋

2
𝑡1[𝐽 (𝑡1)𝑁 (𝑡) − 𝐽 (𝑡)𝑁 (𝑡1)]. 

As a result, we obtain the following formulas for a particular 

solution of the equation under study and the correlation 

function of this solution: 

𝑌 (𝑡) = ∫𝑝(𝑣, 𝑡, 𝑡1)
𝑑 

𝑑𝑡1 

 

 

𝑋(𝑡1)𝑑𝑡1, 𝑘 = 0,1,2 

𝐾  
(𝑣, 𝑡1, 𝑡2)

= ∫ ∫ 𝑝(𝑣, 𝑡1, 𝑠1), 𝑝(𝑣, 𝑡2, 𝑠2)𝐾 ( )(𝑠1, 𝑠2)𝑑𝑠1𝑑𝑠2,   𝑘

  

 

  

 

= 0,1,2. 
Calculations using the latter formula are fraught with 

great difficulties, therefore,for practical usefulness, we carry 

out all further calculations in the environment ofthe mathe-

matical package Maple ([3], [4]). 

Determination of the weight function p (ν, t, t1) 

> restart; 

>ps:=unapply((BesselJ(nu,t1)*BesselY(nu,t)-

BesselJ(nu,t)*BesselY(nu,t1)),nu,t,t1); 

 

 
)1,(),(

),()1,(1,,:

tBesselYtBesselJ

tBesselYtBesselJttps







 
 

 

>p:=unapply(simplify(ps(nu,t,t1)/(2/(Pi*t1))),nu,t,t1); 
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 
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ttp






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
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Input of the correlation function (c. f.)  of the input signal 

X(t) ([5], [6]) 

 

>Kx:=unapply(exp(-(s1-s2)^2),s1,s2); 

 
2

21
2,1:

ss
essKx


   

>Kxn:=unapply(exp(-abs(s1-s2))*(1+abs(s1-s2)),s1,s2); 

   2112,1:
21

ssessKxn
ss




  

>Kxc:=unapply(exp(-(s1-s2)^2)*cos(s1-s2),s1,s2); 

  )21cos(2,1:
2

21
ssessKxc

ss



  

Determination of the correlation function of a partial solu-

tion,corresponding to X(t) with correlation functionKxc and 

Kxn at ν = 0  

 

>Ky0s:=unapply((Pi^2/4)*int(int(s1*s2*p(0,s1,t1)*p(0,s2,

t2)* 

Kxc(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
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> 

Ky0n:=unapply((Pi^2/4)*int(int(s1*s2*p(0,s1,t1)*p(0,s2,t

2)* 

Kxn(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
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



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
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
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> plot3d(Ky0s(t1,t2),t1=0..5,t2=0..5); 

 

> plot3d(Ky0n(t1,t2),t1=0..5,t2=0..5); 

 

 

>evalf([Ky0s(5,5),Ky0n(5,5)]); 

[87.40943122, 114.7107820] 

Determination of the correlation function of apartial solu-

 

                Figure 1  

 

                Figure 3 

 

                Figure 2  
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tion,corresponding to X(t) with correlation functionKx at ν = 

0  

 

> 

Ky0:=unapply((Pi^2/4)*int(int(s1*s2*p(0,s1,t1)*p(0,s2,t2

)* 

Kx(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 

 

Construction of surfaces of correlation function Ky0 and 

Ky0n over a square [0,5] x [0,5] 

 

> plot3d([Ky0(t1,t2),Ky0n(t1,t2)],t1=0..5,t2=0..5); 

 

Calculation of the correlation functionat the corner point of a 

square 

 

>evalf([Ky0(5,5), Ky0n(5,5)]); 
[101.0401016, 114.7107820] 

Determination of the correlation functionof a partial solu-

tion, corresponding to X(t) with correlation function Ky at ν 

= 1; 1/2 

 

> 

Ky1:=unapply((Pi^2/4)*int(int(s1*s2*p(1,s1,t1)*p(1,s2,t2

)* 

Kx(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
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> 

Ky12:=unapply((Pi^2/4)*int(int(s1*s2*p(1/2,s1,t1)*p(1/2,

s2,t2)* 

Kx(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
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22
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Construction of surfaces of correlation function Ky0, Ky1 

over a square [0,5] x [0,5] 

> plot3d([Ky0(t1,t2),Ky1(t1,t2)],t1=0..5,t2=0..5); 
 

 

Calculation of thecorrelation function at the corner point of a 

square 

 

>evalf([Ky0(5,5),Ky1(5,5),Ky12(5,5)]); 
 

[101.0401016,112.1910409,103.6054206] 

Calculation of the correlation function of the 1st and 2nd 

derivatives of X(t) (under the identifier Ku and Kv)  

 

>Ku:=unapply(simplify(diff(Kx(s1,s2),s1,s2)),s1,s2); 

 22122 )
2

1
21221(4)2,1(: ssessssssKu    

>Kv:=unapply(simplify(diff(Ku(s1,s2),s1,s2)),s1,s2); 
 

 2212

43

2234

)
4

3
23

21)2624(

1)326(2141(16)2,1(:

sses

ssss

sssssssKv





 

 

Determination of the correlation function of a solu-

tion,corresponding to dX(t)/dt at ν = 0 

 

> 

Kw0:=unapply((Pi^2/4)*int(int(s1*s2*p(0,s1,t1)*p(0,s2,t

2)* 

Ku(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
 

 

    Figure 4 
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Construction of surface Kw0 

 

> plot3d(Kw0(t1,t2),t1=0..5,t2=0..5,color=sin(t1)); 
 

 

Construction of surfacesof Ky0 and Kw0 over a square 

 

> 

plot3d([Ky0(t1,t2),Kw0(t1,t2)],t1=0..5,t2=0..5,color=sin(t

1)); 
 

Determination of the correlation function of a solu-

tion,corresponding to
  

   𝑋(𝑡)at ν = 0 

 

> 

Kz0:=unapply((Pi^2/4)*int(int(s1*s2*p(0,s1,t1)*p(0,s2,t2

)* 

Kv(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
 

 
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Table of variance values at ν = 0 at points t = 1, 2, 3, 4, 5 for 

k = 0, 1, 2 (under the identifier [Ky0 (i,i), Kw0 (i,i), Kz0 (i,i) 

]) 

 

> for i from 1 to 5 do evalf([Ky0(i,i),Kw0(i,i),Kz0(i,i)],3) 

od; 

.]149,2.86.,101[

]5.76,2.39,0.52[

]8.34,4.16,0.22[

]0.14,60.4,38.4[

]992.0,203.0,124.0[

 

Calculation of the correlation function of asolu-

tion,corresponding to
 

  
𝑋(𝑡) and      

  

   𝑋(𝑡)at ν = 1 

 

> 

Kw1:=unapply((Pi^2/4)*int(int(s1*s2*p(1,s1,t1)*p(1,s2,t

2)* 

Ku(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
 

 

    Figure 5 

 

                Figure 6  
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> 

Kz1:=unapply((Pi^2/4)*int(int(s1*s2*p(1,s1,t1)*p(1,s2,t2

)* 

Kv(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
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Construction of surfaces Ky1 and Kw1 over a square 

 

> 

plot3d([Ky1(t1,t2),Kw1(t1,t2)],t1=0..5,t2=0..5,color=sin(t

1)); 
 

 

Table of variance values at ν =1 at points t = 1, 2, 3, 4, 5   for 

k = 0, 1, 2( [ Ky1 (i,i), Kw1 (i,i), Kz1 (i,i) ] ) 

 

> for i from 1 to 5 do evalf([Ky1(i,i),Kw1(i,i),Kz1(i,i)],3) 

od; 

.]143,2.88.,112[

]2.63,5.37,8.62[

]5.31,5.18,5.31[

]5.18,78.6,12.7[

]64.1,342.0,215.0[

 

Determination of the correlation function  of a solution, 

corresponding to
 

  
𝑋(𝑡) and

  

   𝑋(𝑡)at  ν = 1/2 

 

> 

Kw12:=unapply((Pi^2/4)*int(int(s1*s2*p(1/2,s1,t1)*p(1/2

,s2,t2)* 

Ku(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 
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> 

Kz12:=unapply((Pi^2/4)*int(int(s1*s2*p(1/2,s1,t1)*p(1/2,

s2,t2)* 

Kv(s1,s2),s1=0..t1),s2=0..t2),t1,t2); 

 

 

    Figure 7 



GurbanGasimov, EtibarRzayev, and MirvariAghayeva/ Correlation Studying (2021) 

 

 

  

6  

 



 






























































 

21
4

3
232

1)2624(1)326(

21412)
22

)2cos()2sin(2

22

)2cos()2sin(2
(~1

11

)1cos()1sin(2

11

)1cos()1sin(2

214
4

1
2,1:12

2
2124

322

34

2

2

0

1

0

2

dsdsess

sssss

ssst
ts

ts

st

st
t

ts

ts

st

st

ssttKz

ss

t t












 

 

Table of variance values at ν = 1/2 at points t = 1, 2, 3, 4, 5 

for k = 0,1, 2  ( [ Ky12 (i,i), Kw12 (i,i), Kz12 (i, i) ]) 

 

> for i from 1 to 5 do 

evalf([Ky12(i,i),Kw12(i,i),Kz12(i,i)],3)od ; 

 

.]147,8.86.,104[

]8.73,0.39,2.54[

]5.33,7.16,7.23[

]7.14,98.4,85.4[

]11.1,228.0,140.0[

 

Determination of the weight function p (ν, t, t1) 

>restart; 

>ps:=unapply((BesselJ(nu,t1)*BesselY(nu,t)-

BesselJ(nu,t)*BesselY(nu,t1)),nu,t,t1); 

V  CONCLUSION 

It follows from the results obtained that for various types of 

correlation function of the input stationary random signal at 

the output of a dynamic system described by the Bessel 

equation, processes with correlation functions with similar 

characteristics are noted. Thus, some “smoothing“ of the 

input signal is implemented. 
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