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Abstract— Internet of Things (IoT) is utilized in practically every industry. As IoT becomes more common, the 
number of wireless communication devices grows. The notion of security becomes more crucial as the number of 
devices and network grows. Due to welding constraints on IoT devices, the security can not be guaranteed. Radio 
frequency fingerprinting (RFF) methods, according to the literature, are utilized as an extra safety layer for wireless 
devices. Unique fingerprints due to the production defects of the devices are used to identify wireless devices for 
security purposes in order to avoid fraud or fraud attempts. In this study, a ready-made dataset, consisting of 3985 
registered samples and transformed to nine extracted features, from four WiFi Access Point (AP) devices was 
used. Using this data set, classification performances of Extreme Learning Machine (ELM), Constrained ELMs 
(CELMs), and Meta-ELM techniques are examined. Considering the classification performance of the Meta-ELM 
algorithm, it is concluded that it can be used in RF fingerprinting research due to its superior performance. The 
use of Meta-ELM in multiple classification problems will be a novelty in the literature. 

Index Terms— Internet of things, Radio frequency fingerprinting, Extreme learning machines, Fingerprint 
classification 

I INTRODUCTION

With the extensive usage of smart devices in many differ-

ent industries to improve people's standard of living, the net-

work of IoT devices is fast expanding. Of course, because of 

the absence of security, it is easy to destroy smart gadgets. 

Security in these devices will not be viable in the near future 

due to a lack of hardware resources. Security is still an issue, 

resulting in security flaws in various gadgets. Although cryp-

tographic methods are used for authentication, specifically to 

prevent attackers from accessing these devices, it is not a sim-

ple option for IoT owing to the computational complexity and 

scalability issues of these protocols [1]. RFF provides a phys-

ical layer-based security authentication environment, which 

is especially useful for low-resource devices. Because of the 

fault resulting from the device-based production stage, RFF 

is unique in this industry. Wireless signals generated by IoT 

devices are detected in the literature by software defined radio 

(SDR) devices [2]. RFF signals are detected and recorded us-

ing GNU Radio, Matlab, or other tools. The captured RFF 

signals are used to determine the properties. IoT devices are 

uniquely identified using classifier algorithms that utilise 

these attributes (fingerprints used in device identification). 

Over the last several decades, many neural network archi-

tectures have been developed. The feed forward neural net-

works are among the most widely studied. It has been demon-

strated that a multilayer feed-forward neural network with 

non-polynomial activation functions is capable of approxi-

mating any continuous function [3]. Researchers have exten-

sively studied single hidden layer feed-forward neural net-

works (SLFNs) due to their simple modeling, relatively fast 

learning, and responsiveness. Gradient-based learning, Opti-

mization-based learning, and Least Mean Square (LMS)-

based learning are the three approaches for training SLFNs. 

In the near past, Huang et al. [4] proposed ELM, a novel 

extremely fast learning model of SLFNs. ELM ensures the 

integrity of tasks such as classification, regression, semi-su-

pervised, supervised, and unsupervised learning [5-7]. These 

benefits make ELM popular among researchers and engineers 

alike. 

CELMs construct the parameters of hidden nodes in the 

standard ELM structure using a simple linear combination of 

sample vectors [8]. In CELM, the connection weights be-

tween the input layer and hidden neurons are drawn randomly 

from a constrained set of difference vectors of interclass sam-

ples, rather than an explicit set of random vectors [9]. 

Meta-ELM, can be considered as a hierarchical learning 

model. According to the problem handle training data set ran-

domly reshuffled or not. And then, the training dataset is di-

vided into subsets. Meta-ELM generates predictors on the 

subsets, and calculates predictor weights analytically, just like 

ELM [10].  

Table 1 provides an overview of the features and classifi-

cation techniques utilized in RFF applications. As can beseen 

from the table, ELM-based classifiers have not been run on 

this problem yet. 
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II CLASSIFICATION ALGORITHMS 

Numerous algorithms have been used for classification 

problems. A general categorization of these algorithms is-

given in Figure 1. In this section, the ELM-based algorithms 

discussed in this study will be briefly introduced based on the 

projection given in Table 1. 

A  ELM 
Many engineering and science problems are solved using 

neural networks, and iterative algorithms are commonly used 

to train these networks. In feed-forward neural networks, it-

erative derivative-based algorithms are used to determine net-

work parameters (thresholds and weights). New searches 

have begun as a result of the slow training time of derivative-

based iterative algorithms. ELM, a learning algorithm de-

signed for SLFN, overcomes this slowness. It was proposed 

in 2006 by Huang et al [4]. Although the ELM learning algo-

rithm has a significant advantage in terms of training time, it 

does not perform as well in terms of generalization ability for 

small number of hidden neurons. ELM is a very fast learning 

method that has been proven by researchers to have high per-

formance. However, its high generalization ability is based on 

a large number of hidden neurons, which is ineffective for 

real-time application response during testing. 

When the number of neuron is bigger than the number of 

training samples (L>N), in any case, the linear system (𝑯𝜷 =

𝐓) will have many solutions with zero error, resulting in over-

fitting. Eq. (1) can be used to train SLFN with L<N [4]. Train-

ing is done to minimize the cost function given in Eq. (2). T 

and tj values in the equations represent the expected target in 

vector and matrice recpectively, and H represents the Huang 

matrice. 

This process should be ended finding the specific 

ŵi, �̂�𝑖 , �̂�(𝑖 = 1, … , 𝐿) satisfying the condition given in Eq. 

(3). 

|| 𝑯𝜷 − 𝐓 ||2  <  Ɛ, (1) 
 

 

𝐶 = ∑  

𝑁

𝑗=1

[∑  

𝐿

𝑖=1

𝛽𝑖𝐺(𝑤𝑖, 𝑏𝑖 , 𝑥𝑗) − 𝑡𝑗]

2

, 
 (2) 

 

 

|| 𝑯(�̂�𝟏, … , �̂�𝐋, �̂�𝟏, … , �̂�𝑳)�̂� − 𝑻||𝟐=
𝒎𝒊𝒏

𝐰𝐢,𝐛𝒊,𝜷
 

|| 𝑯(𝐰𝟏, … , 𝐰𝐋, 𝒃𝟏, … , 𝒃𝑳)𝜷 − 𝑻 ||𝟐 

(3) 

 

 

In contrast to traditional approximation theories, which re-

quire the adjustment of input weights and hidden layer biases, 

input weights and hidden layer biases can be randomly as-

signed if the activation function is infinitely differentiable, as 

rigorously demonstrated in [4]. To train an SLFN with fixed 

input weights (𝐰𝐢) and hidden layer biases(𝐛𝐢), simply find 

the specific output weights (𝜷) such that 

|| 𝑯�̂� − 𝑻 ||𝟐 = 
𝒎𝒊𝒏

𝜷
 || 𝑯𝜷 − 𝑻 ||𝟐 

(4) 

 

 

ELM learns the output weight 𝜷 by minimizing the cost func-

tion using Eq. (5), which is equivalent to determining the �̂�  

in Eq. (4). 

𝜷 = 𝐇†𝐓, (5) 

Where 𝐇† is the Moore-Penrose generalized inverse of matrix 

H [20]. The solution �̂� defined in Eq. (5) is one of the least 

squares solutions (LSS) of linear system (𝑯𝜷 = 𝐓), with the 

lowest norm among all solutions. According to [4], �̂� not only 

minimizes training error but also has the smallest weight mag-

nitude. As a result, �̂� deserves to have the best generalization 

performance among all other LSS. In ELM, the orthogonal 

projection method can be used effectively: 𝐇† =
 (𝐇T𝑯)−𝟏 𝐇T if 𝐇T𝑯 is nonsingular, or 𝐇† =   𝐇T(𝐇𝐇T)−𝟏 

if 𝐇𝐇T is nonsingular [5]. The Moore-Penrose generalized in-

verse of H is calculated by singular value decomposition 

(SVD), iterative methods and orthogonalization methods [4].  

TABLE 1 

RFF Features and Classification Algorithms. 

 
Year/ 

Ref. 
Feature/Method Devices Classification 

2007 

[11] 

 

instantaneous attrib-

utes of the signals,  

principal component 

analysis (PCA fea-

tures)  

RF wave-

forms 

from WiFi 

devices 

Probabilistic neural 

network (PNN) 

2008 

[12] 

 

IQoffset, frequency 

error, phase and mag-

nitude error, sync 

correlation. 

802.11 

NICs 

SVM& k-NN 

2009 

[13] 

Dual-tree complex 

wavelet transform 

Wi-Fi 2 

cards 

Fisher-based MDA 

2010 

[14] 

Instantaneous 

phase,amplitude and 

frequency (statistical 

features) 

IoT – 

smart 

cards 

Multiple Discrimi-

nant Analysis /Maxi-

mum Likelihood 

(MDA/ML) 

2014 

[15] 

Clock Offset 

Kalman filters  

Wireless 

systems 

Measurement-hy-

pothesis-filtering 

(MHF) 

2017 

[16] 

instantaneous ampli-

tude responses (Am-

plitude features) and 

their dimensionally 

reduced forms ob-

tained by using (PCA 

features)  

transmit-

ters 

PNN classifier out-

performs the kNN 

2017 

[17] 

Empirical Mode De-

composition in SEI 

Wigner-Ville distri-

bution (WVD) 

Mobile 

phones & 

WLAN 

cards 

SVM 

2019 

[18] 

Three-stage wavelet 

decomposition. 

micro-

UAV con-

trollers 

k-NN, SVM, DA, 

neural networks 

2020 

[19] 

Time-domain RF sig-

nal. 

Wi-Fi & 

ADS-B 

devices 

CNN 

2022 

our 

study 

RF signal statistical 

features. 

Wi-Fi 2  ELM, CELMs, Meta-

ELM 
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B Constrained ELMs 
CELM is a single hidden layer feed-forward neural net-

work based on ELM. The CELM generates its random 

weights from a smaller space than the ELM, by replacing 

completely random weight vectors with ones drawn at ran-

dom from the set of difference vectors of between-classes 

samples. CELM's main contribution is that it incorporates 

sample distribution prior to the construction of the hidden 

layer, resulting in better discriminative feature mapping. The 

efficient use of hidden nodes in ELM is greatly aided by ef-

fective feature mapping. As a result, CELM is better suited 

for discriminatory tasks [8]. CELM has some issues like 

ELM. An overfitting problem occurs when the number of hid-

den nodes is excessively large (for example, 10K). It is sug-

gested that this can be solved by including method in [21]. In 

addition, as the number of hidden nodes exceeds 10K, the 

generation of difference vectors will slow down, thus affect-

ing the running speed of the algorithm. 

CELMs are used to choose parameters of hidden neurons 

at random based on sample distribution. In contrast to ELM, 

which selects them at random, CELMs select them at random 

from a constrained vector space containing some basic com-

binations of original sample vectors. CELMs outperform 

ELM-related methods [22], SVM-related methods [23], and 

the BP neural network in terms of generalization while retain-

ing ELM's fast learning characteristics [9].  

In practice, the hidden layer's regular term with output link 

weights is added to the optimization target to avoid the prob-

lem [25, 26 and 27]. The regularized ELM solution can be 

obtained as follows and λ refers to the regularization factor in 

Eq. (6): 

𝛽 = 𝐇𝑇(I/λ + 𝐇𝐇𝑇)−1𝐓 (6) 

 

The codes of CELMs used for comparison purposes in this 

study were obtained from the link “https://github.com/Husey-

inPARMAKSIZ/Constrained-ELMs”. Reference [8] contains 

the mathematical equations and algorithms of CELMs classifi-

ers used in the study. 

C Meta-ELM 
Meta-ELM is a learning algorithm that combines a group 

of traditional ELM. It can be seen as an ensemble of standard 

ELMs. Meta-learning is a general technique for combining 

the outcomes of multiple learners, and it is loosely defined as 

learning from information generated by a learner(s). As 

shown in Figure 2, a Meta-ELM network model consists of a 

meta-approachist coupling structure called a meta-learner, 

taking the output of the baseline ELMs trained with subset of 

data as input. Each baseline ELM feeds the meta-learner as a 

baseline estimator, and the meta-approacher's parameters are 

deter-mined using all of the training data. 

 

Figure 2 The Meta-ELM Architecture with 2 group (M=2) and 3 neu-

ron (N=3). 

Meta-ELM should minimize the cost function in Eq. (7): 

𝐶 = ∑  

𝑁

𝑖=1

[∑  

𝑀

𝑚=1

𝛽𝑚(𝐱𝑖)ELM𝑚 (𝐱𝑖) − 𝑡𝑖]

2

 
(7) 

Where N denotes the number of training data, M denotes the 

number of base ELMs in the Meta-ELM model, ELM𝑚 (𝐱𝑖) 

denotes the output of the mth base ELM given input𝐱𝑖, and 

𝛽𝑚 denotes the weight for the mth base ELM. 

The Meta-ELM model's output function can be defined as Eq. 

(8): 
𝑓(𝑥) = ℎ (x) .  𝛽, 𝑤ℎ𝑒𝑟𝑒 𝜷 = 𝐇†𝐓 (8) 

III RFF AND DATASET  

The wireless RF given in Figure 3, which is part of the 

natural electromagnetic radiation spectrum, is between 3 kHz 

and 300 GHz frequency values. The spectrum used by wire-

less systems such as cell phones, radio and television broad-

casts is in the critical frequency range. This spectrum covers 

frequencies in the [225 MHz to 3.7 GHz] range.  
RF fingerprinting works similarly to how a listener can iden-

tify a speaker based on natural variations and characteristics 

of the voice. By extracting the time domain and frequency 

domain characteristics of the signal during operation, an RF 

fingerprint can automatically identify different wireless de-

vices in the field [24]. 

 

Figure 1 A General Categorization of Classification Algorithms and 

ELM Algorithms. 
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Figure 3 Wireless Radio Frequencies. 

Devices may have uncontrollable random physical 

changes, randomness, and uniqueness that promotes non-re-

peatability during the manufacturing stage. In the literature, 

these characteristics are referred to as RF fingerprints. The RF 

fingerprint can be used as a separate physical layer security. 

In the military, RF fingerprinting is routinely employed to 

track radars. RF fingerprinting has recently been used to iden-

tify and authenticate wireless devices. Because wireless is 

widespread in most IoT devices, it is also suitable for usage 

in this industry. In general, the RF fingerprint structure oper-

ates by sampling a radio signal from an emitting device. To 

avoid noise or other channel aberrations in the signal, signal 

preprocessing might be performed. The characteristics 

needed to differentiate the signal are then retrieved from the 

radio signal. These characteristics are then sent to a classifier, 

which specifically connects the radio signal to a certain de-

vice. 

The data set (Ready9Ftrvete.mat file) used in the classifi-

cation algorithm performance tests is available online in the 

"https://github.com/HuseyinPARMAKSIZ/RF-Ready-Da-

taset/" directory. This Wi-Fi fingerprint dataset was created 

using feature extraction methods on raw signals collected 

from four access points. In addition, features can be extracted 

from RF signals by applying statistical methods (such as 

skewness, kurtosis and variance) to the phase, frequency and 

amplitude information of the signal. 

The signals recorded by Justice Owusu Agyemang are 

available at “https://github.com/jayluxferro/RFF”, as are var-

ious feature extraction methods from the raw format signal. 

We are grateful to him for granting us permission to use sam-

ple ready signals in our research.  

Output classes are the number of related AP used for cap-

turing RF signals. They are all numbered as (0-3) in data set. 

We used one-hot encoding for the output class. These num-

bers represent the classes of APs and are named Label in the 

dataset. 9 features were extracted from raw signals to be used 

in classification. These are "Mean, GMean, HMean, Median, 

MedianL, MedianH, MedianG, Variance and Stdev", respec-

tively. There are 3985 records in this dataset. The training da-

taset contains 70% (2790 records) and the test dataset con-

tains 30% (1195 records). Table 2 contains some sample data 

from the Wi-Fi RF dataset. 

IV EXPERIMENTAL RESULTS 

In the literature, as can be seen Fig. 1, many algorithms are 

used for classification purposes. In recent years, Deep Learning 

has been successfully applied to detect and classify RF signals. 

In this study, ELM-based algorithms, which have not encoun-

tered in RF fingerprint studies in the literature, were used for 

classification. Experiments was carried out in Matlab program 

running on an Elitebook with Windows 11 Pro 22H2 version 

operating system, Intel(R) Core(TM) i5-8250U CPU 

@1.60GHz processor and 32GB ram. 

TABLE 2 

Wi-Fi RF Dataset Sample Data. 

 
L

a

b

e

l 

mean 

geo-

met-

ric_

mean 

har-

moni

c_me

an 

me-

dian 

me-

dian_

low 

me-

dian_

high 

me-

dian_

grou

ped 

vari-

ance 
stdev 

0 

12.23

0462

8658

941 

12.18

5875

1284

791 

12.14

1539

3845

330 

12.08

8678

8922

157 

12.08

8678

8922

157 

12.08

8678

8922

157 

12.08

8678

8922

157 

1.144

27773

30437

8 

1.069

70918

15272

9 

0 

10.97

1707

4806

488 

10.91

0203

8384

247 

10.84

9597

0933

690 

10.95

3534

5628

792 

10.95

3534

5628

792 

10.95

3534

5628

792 

10.95

3534

5628

792 

1.397

60158

46782

3 

1.182

20200

67138

4 

1 

9.732

1780

8461

114 

9.711

8099

2418

995 

9.691

2836

2967

730 

9.822

4015

0579

026 

9.788

8089

5444

767 

9.855

9940

5713

284 

9.355

9940

5713

284 

0.436

50843

29604

28 

0.660

68784

83523

28 

1 

10.31

5376

2115

175 

10.30

5587

7068

646 

10.29

5621

9061

378 

10.39

6342

8928

298 

10.35

0183

6900

156 

10.44

2502

0956

439 

9.942

5020

9564

394 

0.220

39776

67791

53 

0.469

46540

53060

28 

2 

13.64

7861

7912

927 

12.85

0881

9577

644 

11.98

1319

2831

179 

14.04

3839

2922

497 

13.81

9412

3981

631 

14.26

8266

1863

363 

13.76

8266

1863

363 

19.59

20774

30816

8 

4.426

29387

08152

6 

2 

9.335

4916

9900

563 

7.571

5546

0629

170 

6.164

5096

7083

778 

8.265

1226

7002

011 

8.058

5497

5489

044 

8.471

6955

8514

977 

7.971

6955

8514

977 

33.37

05033

11649

4 

5.776

72080

95639

7 

3 

15.30

1793

9982

726 

14.55

2445

4905

452 

13.57

2806

0531

529 

16.77

5496

8395

464 

16.77

5496

8395

464 

16.77

5496

8395

464 

16.77

5496

8395

464 

18.40

03669

92318

6 

4.289

56489

54548

5 

3 

14.53

9089

7135

477 

13.77

1323

9019

030 

12.76

1360

3584

628 

14.90

3692

0871

237 

14.90

3692

0871

237 

14.90

3692

0871

237 

14.90

3692

0871

237 

18.07

28294

37300

5 

4.251

21505

42286

8 

A On the Meta-ELM Classification Performance 

Classification performance of Meta-ELM is given with the 

confusion matrices given in Figure 4 by using the data set 

whose internet link given in Section III. No data processing has 

been done on the data set, it is already a data set that has been 

processed and given as attributes. All attributes are given di-

rectly as Meta-ELM inputs.  

When the results in Table 3 are examined, 99.314% perfor-

mance in the test set is obtained when M=100 and N=100. For 
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this reason, the values of M and N were chosen as 100 when 

constructing the confusion matrices. In the Figure 4, the matri-

ces in the upper row are for the training set, and the ones in the 

lower row are for the test data set. The accuracy matrix's four 

classes represent APs. In the confusion matrix, the output class 

1 value represents AP number 0. The value 2 denotes the AP 

number 1, the value 3 denotes the AP number 2 and the value 4 

denotes the AP number 3. For example, of the 295 test set data 

belonging to the AP-0 class, 294 of them are correctly output 

class 1. But only 1 of them is incorrectly valued as output class 

2. When the cases in other classes are analyzed similarly, the 

Meta-ELM (M, N=100) classifier algorithm we developed 

classifies the test set of the sample Wi-Fi RF fingerprint with 

99.3% success. The performance of the same algorithm in the 

training phase is around 99.7%.  

 

 

 

Figure 4 Confusion Matrix for Meta-ELM (up: train accuracy, down: 

test accuracy, M=100, N=100). 

    The M values used when comparing the classification accu-

racies of the Meta-ELM classifier are 10, 15, 25, 30, 50 and 

100, and the N values are 2, 4, 8, 20, 50 and 100. After the sys-

tem is trained with the training data, the accuracy values ob-

tained for the test data are given in Table 3. The table shows the 

average values of the results obtained by running each algo-

rithm separately five times. The best accuracy values for each 

M are given in bold, italic, and underline. In addition, for 

M=100, it is seen that the performance obtained for all N values 

is 98% and above. For N=100, when M=10, the accuracy is 

around 94%, while the accuracy increases as M increases. 

Within the framework of these results, it can be said that a very 

satisfactory performance of 99% can be obtained for M≥50 and 

N=100. As can be seen from the table, the testing time in-

creased as the number of cells (N). 

TABLE 3 

Meta-ELM Classification Accuracy (M=number of groups, 

N = number of cells in each group, Acc=accuracy, 

time=testing time). 

M=10 N=2 N=4 N=8 N=20 N=50 N=100 

Acc 0.83582 0.88502 0.879 0.87063 0.8959 0.94544 

time 3.9248 4.939 4.9003 6.5053 6.5273 8.6414 

M=15 N=2 N=4 N=8 N=20 N=50 N=100 

Acc 0.90946 0.91732 0.92921 0.88184 0.94711 0.96402 

time 6.4189 6.7 7.8039 9.112 10.648 13.045 

M=25 N=2 N=4 N=8 N=20 N=50 N=100 

Acc 0.93406 0.95548 0.94745 0.94444 0.97272 0.98209 

time 9.2511 9.5882 12.029 14.992 17.385 23.95 

M=30 N=2 N=4 N=8 N=20 N=50 N=100 

Acc 0.94996 0.95598 0.96033 0.9513 0.97958 0.98343 

time 12.848 13.701 14.128 17.659 22.132 27.594 

M=50 N=2 N=4 N=8 N=20 N=50 N=100 

Acc 0.97891 0.97992 0.97774 0.97941 0.98929 0.9913 

time 40.988 43.552 45.682 48.423 54.373 58.17 

M=100 N=2 N=4 N=8 N=20 N=50 N=100 

Acc 0.98611 0.98728 0.98611 0.99063 0.99213 0.99314 

time 139 131.81 142.18 153.34 151.57 177.31 

 

C Performance Comparison of ELM Based Some 
Algorithms  

CELMs give improved accuracy performance over the basic 

ELM [8]. We examined the performance of a robust classifier 

(Meta-ELM) in our study by comparing different ELM kinds 

that have demonstrated their performance in the literature, be-

cause Meta-ELM fundamentally evolved with the advance-

ments made on ELM. Based on this analysis, in experimental 

studies where we compared Meta-ELM with other ELM types, 

the lowest limit of M=10 groups was used. The average of ac-

curacy values were calculated after the algorithms were ran five 

times. 30% of the data set consisting of 3985 records in total 

was tested with approximately 1195 records as the test set. The 

activation function logsig is used in all classifier algorithms. 

When a sigmoid additive node is used in the hidden layer of a 

case study in the literature, a different value in the form of mul-

tiples of 2 for regularizatin factor was used for 1000 cells in the 

classification with ELM in multi-class datasets [5]. The regu-
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larizatin factor is usually determined empirically and varies de-

pending on the problem and data set under consideration. In 

this study, this parameters has been determined using an ana-

lytical approach over training input matrice (X) as given Eq (9). 

𝛌 = max (eig(X𝐓X)) (9) 

Table 4 compares the performance of the test data with the 

trained ELM, CELM, and Meta-ELM algorithms. In all tables 

in this paper, algorithm execution times for the test set are given 

in milliseconds. The test time increases as the number of cells 

(N) increases, as shown in the table. When N=2500, Meta-

ELM and other constrained ELMs performed best, with the ex-

ception of DELM. ELM, on the other hand, performed best 

when N=500, and DELM performed best when N=1500. To 

emphasize the highest performance values, they are bolded, 

italic and underlined. 

TABLE 4 

Meta-ELM, ELM and CELMs Classifiers Accuracy 

(M=number of groups, N = number of hidden nodes, 

Acc=accuracy, time=testing time). 

Algo-

rithm 
N=100 N=500 N=1000 N=1500 N=2500 

ELM 

Acc 

 

0.9719 0.9903 0.9858 0.9846 0.9831 

time 3 7.8 12.7 22.2 33.6 

CELM 

Acc 

 

0.9764 0.9863 0.9869 0.9871 0.9878 

time 3 9.3 16.2 24.6 40.1 

DELM 

Acc 

 

0.9801 0.9854 0.9864 0.9866 0.9851 

time 3.1 9.4 15.7 25.2 40.8 

MELM 

Acc 

 

0.9779 0.9836 0.9861 0.9869 0.9871 

time 2.7 9.6 15.9 25.5 45.5 

CSELM 

Acc 

 

0.9680 0.9736 0.9746 0.9748 0.9749 

time 2.6 9.2 14.9 27.9 40.1 

RSELM 

Acc 

 

0.9789 0.9871 0.9883 0.9885 0.9896 

time 2.9 9.4 14.7 25.1 45.8 

Meta-

ELM 

M=25 

N=4 N=20 N=40 N=60 N=100 

Acc 0.95548 0.94444 0.96586 0.97623 0.98209 

time 9.5882 14.992 16.71 21.337 23.95 

Meta-

ELM 

M=50 

N=2 N=10 N=20 N=30 N=50 

Acc 0.97891 0.93824 0.97941 0.98243 0.98929 

time 40.988 46.434 48.423 51.373 56.373 

Meta-

ELM 

M=100 

N=1 N=5 N=10 N=15 N=25 

Acc 0.94494 0.98577 0.97031 0.98728 0.99381 

time 90.176 132.66 136.64 138.32 151.08 

 

In all ELM algorithms N represents the number of neurons in 

the hidden layer (sigmoid additive node). Since the Meta-ELM 

contains a group of ELMs, its total total number of cells  is de-

termined by the product of the number of groups (M) and the 

number of cells in each group (N). For this reason, M and N in 

Meta-ELM were adjusted so that equals the number of cells 

used in other constructs. As can be seen in Table 4, 100 neurons 

were used for Meta-ELM with M=25 and N=4, M=50 and 

N=2, M=100 and N=1. When M=100 and N=25, the highest 

performance of 0.99381% in the test set is obtained when 

M=100 and N=25 (2500 neurons in total).   

V  CONCLUSION 

 
The performance of various ELM types has been evaluated 

for RF fingerprinting classification in this study. Furthermore, 

in the literature, the Meta-ELM algorithm is commonly used 

in regression problems, here, it has been adapted as classifier 

and used. In this regard, the presented research is unique and 

contributes the related area. In addition, it has achieved abso-

lute performance accuracy compared to CELMs. Meta-

ELM's ability to classify in RF fingerprints show that its us-

age in the future studies may get advantages. Furthermore, the 

Meta-ELM algorithm will bring new ideas to the literature in 

a variety of classification problems. 
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